

Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

info@amstechnologies.com www.amstechnologies-webshop.com

General Product Information

Product	Application
850 nm Tapered Amplifier	Spectroscopy
C-Mount Package	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature (non condensing)	Ts	°C	-40		85
Operational Temperature at Case (non cond.)	T_{C}	°C	0		50
Forward Current	I _F	А			1.7
Reverse Voltage	V_R	V			0
Output Power	P_{opt}	W			0.6

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	5		40
Forward Current	I _F	Α			1.5
Input Power	P _{input}	mW	10		50
Output Power	P_{opt}	W			0.5

Measurement Conditions / Comments		
non condensing		
with proper injection from a seed laser		

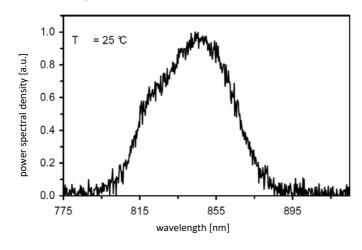
Characteristics at T_{LD} = 25 °C at BOL

Symbol	Unit	min	typ	max
λ_{C}	nm		850	
$\Delta\lambda$	nm		30	
dλ / dT	nm / K		0.3	
I _{op Gain}	А			1.5
P _{opt}	W	0.5		
G	dB		11	
L _C	μm		2750	
V	λ_{C} $\Delta\lambda$ $d\lambda / dT$ $I_{op Gain}$ P_{opt} G	$\begin{array}{ccc} \lambda_C & nm \\ \Delta\lambda & nm \\ d\lambda / dT & nm / K \\ V & I_{op Gain} & A \\ P_{opt} & W \\ G & dB \\ \end{array}$	$\begin{array}{cccc} \lambda_C & nm \\ \Delta\lambda & nm \\ d\lambda / dT & nm / K \\ V & I_{op Gain} & A \\ & P_{opt} & W & 0.5 \\ & G & dB \\ & & & \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Measurement Conditions / Comments
see images on page 4
with proper injection from a seed laser

Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier



Characteristics at T _{LD} = 25 °C	at BOL				conta
Parameter	Symbol	Unit	min	typ	max
Reflectivity at Front Facet	R _{ff}			3·10-4	1.10-3
Reflectivity at Rear Facet	R_{rf}			3-10-4	1.10-3
Input Aperture (at rear side)	d _{in}	μm		3	
Output Aperture (at front side)	d_{out}	μm		190?	
Astigmatism	А	μm		560	
Input Divergence parallel (1/e²)	$\Theta_{in }$	0			
Input Divergence perpendicular (1/e²)	$\Theta_{\text{in}\perp}$	0			
Output Divergence parallel (1/e²)	$\Theta_{\text{out} }$	0			
Output Divergence perpendicular (1/e²)	$\Theta_{\text{out}\perp}$	0			
Beam quality factor	M^2				
Polarization				TE	

Measurement Conditions / Comments	
depending on operating conditions	
aspenang on sperang conducts	
E field parallel to junction plane	

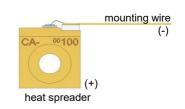
Typical Measurement Results

spectrum measured w/o injection

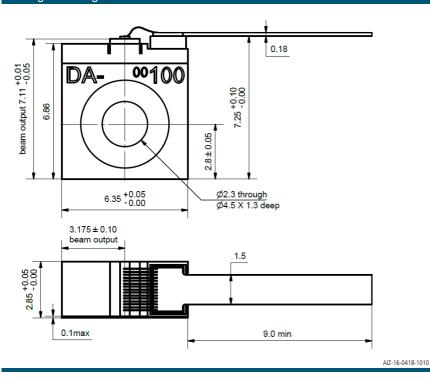
Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice

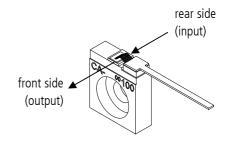
Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier


Package Dimensions

Parameter	Symbol	Unit	min	typ	max
Height of Emission Plane	h	mm	7.05	7.10	7.20
C-Mount Thickness	t	mm		2.80	


Measurement Conditions / Comments


Package Pinout

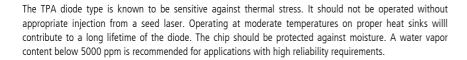
Mounting Wire	Cathode (-)
Housing	Anode (+)

Package Drawings

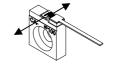
This data sheet is subject to change without notice.

© TOPTICA eagleyard

TOPTICA EAGLEYARD


Revision 0.91

TAPERED AMPLIFIERS Semiconductor Optical Amplifier


Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

INVISIBLE LASER RADIATION
AVOID EYE OR SKIN EXPOSURE
TO DIRECT OR SCATTERED RADIATION
CLASS 4 LASER PRODUCT
WAVELENGTH 850 nm
MAX. OUTPUT POWER 0.6 W

IEC-60825-

Revision 0.70

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

General Product Information

Product	Application
850 nm Tapered Amplifier	Spectroscopy
14 Pin Butterfly Package (non hermetic)	
with PM Fiber and FC/APC Connector (Input)	
and collimated Output Beam	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	T _s	°C	-40		85
Operational Temperature at Case	T_{C}	°C	15		35
Operational Temperature at Chip	T_{chip}	°C	15		35
Forward Current	I _F	А			3.5
Reverse Voltage	V_R	V			2
Output Power	P_{opt}	W			2.2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	15		50
Operational Temperature at Chip	T_{chip}	°C	15	25	35
Forward Current	I _F	А			3.2
Input Power	P _{input}	mW	10		80
Output Power	P_{opt}	W			2

Measurement Conditions / Comments
non condensing
with proper injection from a seed laser

Characteristics at T_{chip}

Parameter	Symbol	Unit	min	typ	max
Wavelength	λ_{C}	nm		850	
Gain Width (FWHM)	Δλ	nm		20	
Temp. Coefficient of Wavelength	dλ / dT	nm / K		0.3	
Operational Current	I _{op Gain}	А			3.2
Output Power	P _{opt}	W	2.0		
Amplification	G	dB		16	

Measurement Conditions / Comments					
$P_{\rm opt} = {\rm with\ proper\ injection\ from\ a\ seed\ laser}$					
at recommended maximum forward current					
acrossimistics maximum formatic current					

Revision 0.70

2022-01-10

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Characteristics at T _{chip}					cont'd
Parameter	Symbol	Unit	min	typ	max
Beam Diameter horizontal	d _{out}	mm		1	
Beam Diameter vertical	$d_{out\perp}$	mm		1	
Output Divergence parallel	Θ_{out}	mrad		3	
Output Divergence perpendicular	$\Theta_{out\perp}$	mrad		3	
Polarization				TE	

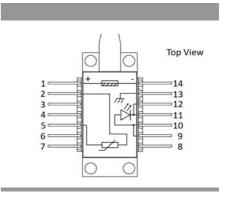
Measurement Conditions / Comments
1/e2
1/e2
E field parallel to base plate

Thermoelectric Cooler					
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А			2.5
Voltage	U_TEC	V			5
Power Dissipation (total loss at case)	P _{loss}	W		10	
Temperature Difference	ΔΤ	K			20

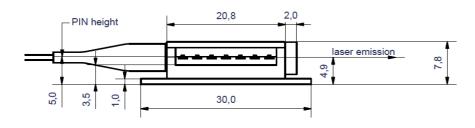
Measu	Measurement Conditions / Comments					
$P_{opt} =$	2 W					
$P_{\text{opt}} =$	2 W					
$P_{\text{opt}} =$	2 W					
$P_{opt} =$	2 W					

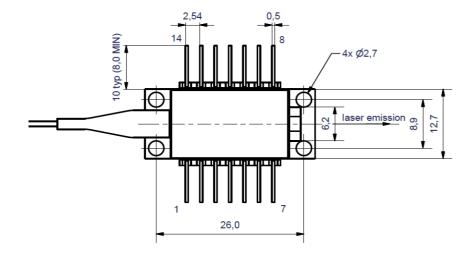
Thermistor (Standard NTC Type)					
Parameter	Symbol	Unit	min	typ	max
Resistance	R	kΩ		10	
Beta Coefficient	β			3892	
Steinhart & Hart Coefficient A	А			1.1293 x 10) -3
Steinhart & Hart Coefficient B	В			2.3410 x 10) -4
Steinhart & Hart Coefficient C	C			8.7755 x 10) -8

Measurement Conditions / Comments				
T _{Chip} = 25° C				
$R_1 / R_2 = e^{\beta (1/T_1 - 1/T_2)}$ at $T_{LD} =$	0° 50° C			
$1/T = A + B(\ln R) + C(\ln R)^3$				
T: temperature in Kelvin				
R: resistance at T in Ohm				



Revision 0.70


TAPERED AMPLIFIERS Semiconductor Optical Amplifier



Pin	Assignment		
1	Thermoelectric Cooler (+)	14	Thermoelectric Cooler (-)
2	Thermistor	13	Case
3	not connected	12	Amplifier (Cathode)
4	not connected	11	Amplifier (Cathode)
5	Thermistor	10	Amplifier (Anode)
6	not connected	9	Amplifier (Anode)
7	not connected	8	not connected

Package Drawings

Caution. Excessive mechanical stress on the package can lead to a damage of the device.

See <u>instruction manual</u> on www.toptica-eagleyard.com

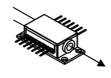
TOPTICA EAGLEYARD

Revision 0.70

2022-01-10

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

Unpacking, Installation and Laser Safety


Unpacking the taperd amplifier should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The TPA diode type is known to be sensitive against thermal stress. It should not be operated without appropriate injection from a seed laser. Operating at moderate temperatures on proper heat sinks willl contribute to a long lifetime of the diode. The chip should be protected against moisture. A water vapor content below 5000 ppm is recommended for applications with high reliability requirements.

This amplifier is designed for the setup of MOPA systems. Appropriate seed lasers are DFB lasers of the type EYP-DFB-xxxxx-xxxxx-1500-BFY12-000x with matching wavelengths. An external fiber isolator should be used between seed laser and amplifier in order to suppress backreflections that may disturb the emission spectrum of the seed laser and may cause mode-hops in case of wavelength tuning.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each tapered amplifier will come with an individual test protocol verifying the parameters given in this document

Laser Emission

Complies with 21 CFR 1040.10 and 1040.40

info@amstechnologies.com www.amstechnologies-webshop.com

Revision 1.01

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

General Product Information

Product	Application
850 nm Tapered Amplifier	Spectroscopy
C-Mount Package	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature (non condensing)	Ts	°C	-40		85
Operational Temperature at Case (non cond.)	T_{C}	°C	0		50
Forward Current	I _F	Α			3.5
Reverse Voltage	V_R	V			2
Output Power	P _{opt}	W			2.2

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	5		40
Forward Current	I _F	А			3.2
Input Power	P _{input}	mW	10		50
Output Power	P_{opt}	W			2.0

Measurement Conditions / Comments			
non condensing			
with proper injection from a seed laser			

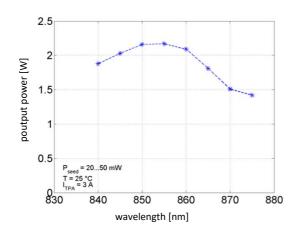
Characteristics at T_{LD} = 25 °C at BOL

Parameter	Symbol	Unit	min	typ	max
Design Wavelength	λ_{C}	nm		852	
Gain Width (FWHM)	$\Delta\lambda$	nm		20	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.3	
Operational Current $@P_{opt} = 2.0 \text{ W}$	I _{op Gain}	А			3.2
Output Power	P _{opt}	W	2.0		
Amplification	G	dB		16	
Cavity length	L_{C}	μm		4000	

Measurement Conditions / Comments
with proper injection from a seed laser

Revision 1.01

TAPERED AMPLIFIERS Semiconductor Optical Amplifier



Characteristics at T _{LD} = 25 °C at BOL cont'd			cont'd			
Parameter	Symbol	Unit	min	typ	max	Meas
Reflectivity at Front Facet	R _{ff}			3·10-4	1.10-3	
Reflectivity at Rear Facet	R_{rf}			3.10-4	1.10-3	
Input Aperture (at rear side)	d _{in}	μm		3		
Output Aperture (at front side)	d_out	μm		210		
Astigmatism	А	μm		700		depe
Input Divergence parallel (1/e²)	$\Theta_{in }$	0				
Input Divergence perpendicular (1/e²)	$\Theta_{in\perp}$	0		31		
Output Divergence parallel (1/e²)	$\Theta_{\text{out} }$	0		15		
Output Divergence perpendicular (1/e²)	$\Theta_{out\perp}$	0		31		
Polarization				TE		E fiel

Meas	uremen	t Conditio	ons / Con	nments	
deper	nding on	operating	g conditio	ons	
E fiolo	l parallo	l to juncti	on nlano		

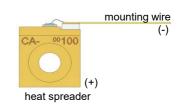
Typical Measurement Results

output power with seeding at different wavelengths

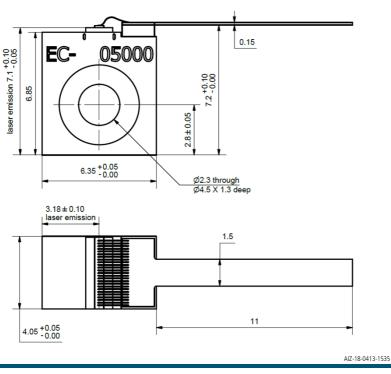
Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

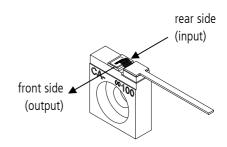
Revision 1.01

TAPERED AMPLIFIERS Semiconductor Optical Amplifier


Package Dimensions

Parameter	Symbol	Unit	min	typ	max
Height of Emission Plane	h	mm	7.05	7.10	7.20
C-Mount Thickness	t	mm		4.05	


Measurement Conditions / Comments


Package Pinout

Mounting Wire	Cathode (-)	
Housing	Anode (+)	

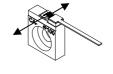
Package Drawings

This data sheet is subject to change without notice.

© eagleyard Photonics

Revision 1.01

TAPERED AMPLIFIERS Semiconductor Optical Amplifier


Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

The TPA diode type is known to be sensitive against thermal stress. It should not be operated without appropriate injection from a seed laser. Operating at moderate temperatures on proper heat sinks willl contribute to a long lifetime of the diode. The chip should be protected against moisture. A water vapor content below 5000 ppm is recommended for applications with high reliability requirements.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

INVISIBLE LASER RADIATION
AVOID EYE OR SKIN EXPOSURE
TO DIRECT OR SCATTERED RADIATION
CLASS 4 LASER PRODUCT
WAVELENGTH 852 nm
MAX. OUTPUT POWER 2.2 W

IEC-60825-0

Complies with 21 CFR 1040.10 and 1040.40

Revision 0.92

TAPERED AMPLIFIERS Semiconductor Optical Amplifier

General Product Information

Product	Application
870 nm Tapered Amplifier	Spectroscopy
C-Mount Package	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature (non condensing)	Ts	°C	-40		85
Operational Temperature at Case (non cond.)	T_{C}	°C	0		50
Forward Current	I _F	А			1.7
Reverse Voltage	V_R	V			0
Output Power	P_{opt}	W			0.6

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum Ratings may damage the laser. Please note that a damaging optical power level may occur although the maximum current is not reached. These are stress ratings only, and functional operation at these or any other conditions beyond those indicated under Recommended Operational Conditions is not implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _C	°C	5		40
Forward Current	I_{F}	Α			1.5
Input Power	P _{input}	mW	10		50
Output Power	P_{opt}	W			0.5

Measurement Conditions / Comments
non condensing
with proper injection from a seed laser

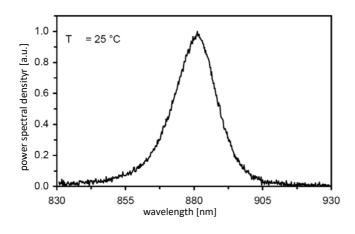
Characteristics at T_{LD} = 25 °C at BOL

Parameter	Symbol	Unit	min	typ	max
Design Wavelength	λ_{C}	nm		880	
Gain Width (FWHM)	Δλ	nm		20	
Temperature Coefficient of Wavelength	dλ / dT	nm / K		0.3	
Operational Current @ P _{opt} = 0.5 W	I _{op Gain}	Α			1.5
Output Power	P _{opt}	W	0.5		
Amplification	G	dB		10	
Cavity Length	L _C	μm		2750	

Meas	uremer	t Cond	ditions	s / Con	nments	
with p	roper i	njectio	n from	ı a see	d laser	

Revision 0.92

TAPERED AMPLIFIERS Semiconductor Optical Amplifier



Characteristics at T _{LD} = 25 °C	at BOL				cont'd
Parameter	Symbol	Unit	min	typ	max
Reflectivity at Front Facet	R_{ff}			3-10-4	1.10-3
Reflectivity at Rear Facet	R_{rf}			3·10-4	1.10-3
Input Aperture (at rear side)	d _{in}	μm		3	
Output Aperture (at front side)	d_{out}	μm		210	
Astigmatism	А	μm		560	
Input Divergence parallel (1/e²)	$\Theta_{in }$	0			
Input Divergence perpendicular (1/e²)	$\Theta_{in\perp}$	0			
Output Divergence parallel (1/e²)	$\Theta_{out }$	0			
Output Divergence perpendicular (1/e²)	$\Theta_{out\perp}$	0			
Beam quality factor	M^2				
Polarization				TE	

Measurement Conditions / Comments	
depending on energing conditions	
depending on operating conditions	
E field parallel to junction plane	

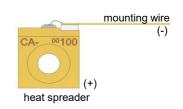
Typical Measurement Results

spectrum measured w/o injection

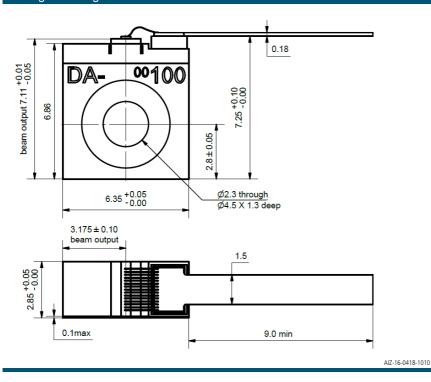
Performance figures, data and any illustrative material provided in this specification are typical and must be specifically confirmed in writing by eagleyard Photonics before they become applicable to any particular order or contract. In accordance with the eagleyard Photonics policy of continuous improvement specifications may change without notice.

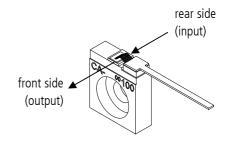
Revision 0.92

TAPERED AMPLIFIERS Semiconductor Optical Amplifier


Package Dimensions

Parameter	Symbol	Unit	min	typ	max
Height of Emission Plane	h	mm	7.05	7.10	7.20
C-Mount Thickness	t	mm		2.80	


Measurement Conditions / Comments


Package Pinout

Mounting Wire	Cathode (-)
Housing	Anode (+)

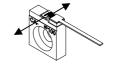
Package Drawings

This data sheet is subject to change without notice.

© TOPTICA eagleyard

Revision 0.92

TAPERED AMPLIFIERS Semiconductor Optical Amplifier


Unpacking, Installation and Laser Safety

Unpacking the laser diodes should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

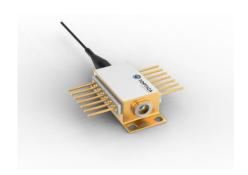
The TPA diode type is known to be sensitive against thermal stress. It should not be operated without appropriate injection from a seed laser. Operating at moderate temperatures on proper heat sinks willl contribute to a long lifetime of the diode. The chip should be protected against moisture. A water vapor content below 5000 ppm is recommended for applications with high reliability requirements.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

Each laser diode will come with an individual test protocol verifying the parameters given in this document.

INVISIBLE LASER RADIATION AVOID EYE OR SKIN EXPOSURE TO DIRECT OR SCATTERED RADIATION CLASS 4 LASER PRODUCT WAVELENGTH 880 nm MAX. OUTPUT POWER 0.6 W

21 CFR 1040.10 and 1040.40


Revision 0.70 2023-01-17

TAPERED AMPLIFIER Semiconductor Optical Amplifier

General Product Information

Product	Application
895 nm Tapered Amplifier	Spectroscopy
with hermetic 14-Pin Butterfly Housing (RoHS compliant)	
including Thermoelectric Cooler and Thermistor	
with PM fiber (input) and integrated beam collimation (output)	
with PM fiber (input) and integrated beam collimation (output)	

Absolute Maximum Ratings

Parameter	Symbol	Unit	min	typ	max
Storage Temperature	Ts	° C	-40		85
Operational Temperature at Case	T _C	°C	-20		75
Forward Current	I _F	А			4,5
Reverse Voltage	V_R	V			2
Output Power	P _{opt}	W			3.2
TEC Current	I _{TEC}	Α			5
TEC Voltage	V_{TEC}	V			7

Measurement Conditions / Comments

Stress in excess of one of the Absolute Maximum
Ratings may damage the laser. Please note that a
damaging optical power level may occur although
the maximum current is not reached. These are
stress ratings only, and functional operation at these
or any other conditions beyond those indicated
under Recommended Operational Conditions is not
implied.

Recommended Operational Conditions

Parameter	Symbol	Unit	min	typ	max
Operational Temperature at Case	T _{case}	°C	0		50
Operational Temperature at Chip	$T_{\rm chip}$	°C	10	25	35
Forward Current	I _F	Α			4
Input Power	Popt	mW	10		50
Output Power	P _{opt}	W			2.5

Measurement Conditions / Comments
seeding required above 2 A
with proper injection from a seed laser

Characteristics = 25 °C at BOL

Parameter	Symbol	Unit	min	typ	max
Wavelength	λ	nm		895	
Gain Width (FWHM)	Δλ	nm		20	
Output Power	Popt		2.5		
Polarization				TE	
Amplification	G	dB		20	
Temp. Coefficient of Wavelength	dλ/dT	nm/K		0.3	

Measurement Conditions / Comments
E field parallel to base plate

Distributor

amstechnologies

where technologies meet solutions

info@amstechnologies.com www.amstechnologies-webshop.com

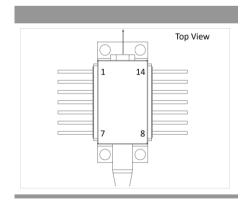
Revision 0.70 2023-01-17

TAPERED AMPLIFIER Semiconductor Optical Amplifier

Thermistor (Standard NTC Type)

Characteristics	= 25 °C at BOL				
Parameter	Symbol	Unit	min	typ	max
Beam Diameter	d	mm		1	
Output Divergence parallel	Θ_{out}	mrad		3	
Output Divergence perpendicular	$\Theta_{ ext{out}\perp}$	mrad		3	

Measurement Conditions / Comments
1/e²
1/e² (full angle)
1/e² (full angle)

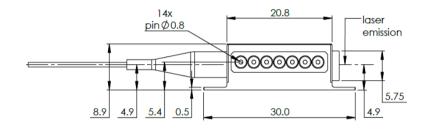

Thermoelectric Cooler					
Parameter	Symbol	Unit	min	typ	max
Current	I _{TEC}	А		1.2	
Voltage	U_{TEC}	V		2	
Power Dissipation (total loss at case)	P _{loss}	W		8	
Temperature Difference	ΔΤ	K			40

Measurement Conditions / Comments
Popt = 2 W; DT = 20 K
Popt = 2 W; DT = 20 K
Popt = 2 W; DT = 20 K
Popt = 2 W

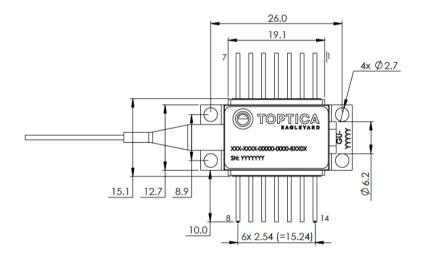
Parameter	Symbol	Unit mi	n typ	max	
Resistance	R		10		
Beta Coefficient	b		3892		
Steinhart & Hart Coefficient A	А		1.1293 x 10 ⁻³		
Steinhart & Hart Coefficient B	В		2.3410 x 10 ⁻⁴		
Steinhart & Hart Coefficient C	С		8.7755 x 10	o -8	

25° C	
0° 50° C	

Pin Assignment	
1 Thermoelectric Cooler (+)	14 Thermoelectric Cooler (-)
2 Thermistor	13 not connected
3 not connected	12 not connected
4 not connected	11 Amplifier (Cathode)
5 Thermistor	10 Amplifier (Anode)
6 not connected	9 not connected
7 not connected	8 not connected



Revision 0.70 2023-01-17


TAPERED AMPLIFIER Semiconductor Optical Amplifier

Package Drawings

SWZ-23-0117-1237

Parameter PM Fiber 900 / 125 / 5.5 μm, UV/Polyester-elastomer Coating length: 1 +/-0.1 m

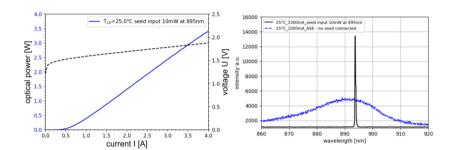
Fiber and Connector Type (Input)

Connector

FC/APC

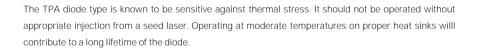
narrow key / 2 mm narrow key / 2 mm Measurement Conditions / Comments

www.toptica-eagleyard.com
info@toptica-eaglevard.com



Revision 0.70 2023-01-17

TAPERED AMPLIFIER Semiconductor Optical Amplifier



Typical Measurement Results

Unpacking, Installation and Laser Safety

Unpacking the taperd amplifier should only be done at electrostatic safe workstations (EPA). Though protection against electro static discharge (ESD) is implemented in the laser package, charges may occur at surfaces. Please store this product in its original package at a dry, clean place until final use. During device installation, ESD protection has to be maintained.

This amplifier is designed for the setup of MOPA systems. Appropriate seed lasers are DFB lasers of the type EYP-DFB-xxxx-xxxxx-1500-xxxxx-000x with matching wavelengths. An external fiber isolator should be used between seed laser and amplifier in order to suppress backreflections that may disturb the emission spectrum of the seed laser and may cause mode-hops in case of wavelength tuning.

Each tapered amplifier will come with an individual test protocol verifying the parameters given in this document.

The laser emission from this diode is close to the invisible infrared region of the electromagnetic spectrum. Avoid direct and/or indirect exposure to the free running beam. Collimating the free running beam with optics as common in optical instruments will increase threat to the human eye.

INVISIBLE LASER RADIATION
TO DIRECT OR SCATTERED RADIATION
CLASS A LASER PRODUCT
AVOID EYE OR SKIN EXPOSUR
WAVELENGTH 895 nm
MAX. OUTPUT POWER 3.2 W

Complies with 21 CFR 1040.10 and 1040.40

info@amstechnologies.com www.amstechnologies-webshop.com

